[
1]. T. Quangnha, and C. Lee, "Cavitation in Fuel Pump with 2D Cascade Modeling," The Korean Society for Aeronautical & Space Sciences, Vol. 37(5):pp. 483–489, 2009.
[
2]. W. G. Park, T. J. Gang, and C. M. Jeong, "A Study on the Analysis of the Abnormal Flow Field of the Transcendental Cavity Torpedo: Including Full Compressibility and the Effect of Temperature Change," Bulletin of the Society of Naval Architects of Korea, Vol. 49(3):pp. 13–18, 2012.
[
3]. Y. G. Kim, and Y. I. Nah, Propulsion Technologies of Supercavitating Rocket Torpedo, Shkval, The Korean Society of Propulsion Engineers, pp. 383-387. 2011.
[
4]. J. Y. Um, H. A. Lim, W. S. Jin, and J. Y. Choi, "Conceptual Design of an Underwater Vehicle Powered by Water-Breathing Ramjet," The Korean Society of Propulsion Engineers, Vol. 18(4):pp. 50–60, 2014.
[
5]. J. J. Park, Understanding of Supercavitation Technology and Analysis of Development Cases, Defense & Technology. pp. 152–159, 2020.
[
6]. D. H. Kim, and W. G. Park, Numerical Analysis of Cavity Shape According to Ventilated Condition and Cavitator AoA, The Korean Society of Mechanical Engineers. pp. 381–385, 2020.
[
7]. R. F. Kunz, T. S. Chyczewski, D. A. Boger, D. R. Stinebring, and H. J. Gibeling, Multi-Phase CFD Analysis of Natural and Ventilated Cavitation about Submerged Bodies, 3rd ASME/JSME Joint Fluids Engineering Conference. pp. 1–9, 1999.
[
8]. R. F. Kunz, "A preconditioned Navier-Stokes Method for Two-Phase Flows with Application to Cavitation Prediction," Computers & Fluids, Vol. 29(8):pp. 849–875, 2000.
[
9]. J. Lindau, R. F. Kunz, S. Venkateswaran, and C. Merkle, Development of a Fully-Compressible Multi-Phase Reynolds-Averaged Navier-Stokes Model, 15th AIAA Computational Fluid Dynamics Conference. pp. 26482001.
[
10]. Y. H. Choi, and C. L. Merkle, "The Application of Preconditioning in Viscous Flows," Computational Physis, Vol. 105(2):pp. 207–223, 1993.
[
11]. C. T. Ha, and W. G. Park, "Evaluation of a New Scaling Term in Preconditioning Schemes for Computations of Compressible Cavitating and Ventilated Flows," Ocean Engineering, Vol. 126, pp. 432–466, 2016.
[
12]. B. K. Ahn, K. S. Kim, S. W. Jeong, and H. G. Yoon, "An Experimental Study on Multi-Injected Artificial Supercavitation," The Society of Naval Architects of Korea, Vol. 58(1):pp. 24–31, 2021.
[
13]. M. P. Fard, I. Rashidi, and N. M. Nouri, "Numerical and Experimental Study of a Ventilated Supercavitating Vehicle," Journal of Fluids Engineering, Vol. 136, pp. 1013012014.
[
14]. D. H. Kim, S. S. Paramanantham, and W. G. Park, "Numerical Analysis of Multi-Phase Flow Around Supercavitating Body at Various Cavitator Angle of Attack and Ventilation Mass Flux," Applied Sciences, Vol. 10, pp. 42282020.
[
15]. M. S. Jin, C. T. Ha, and W. G. Park, "Numerical Study on Heat Transfer Effects of Cavitating and Flashing Flows based on Homogeneous Mixture Model," International Journal of Heat and Mass Transfer, Vol. 109, pp. 1068–1083, 2017.
[
16]. T. H. Phan, J. G. Shin, V. T. Nguyen, T. N. Duy, and W. G. Park, "Numerical Analysis of an Unsteady Natural Cavitating Flow Around an Axisymmetric Projectile Under Various Free-Stream Temperature Conditions," International Journal of Heat and Mass Transfer, Vol. 164, pp. 1204842020.
[
17]. M. Salari, S. M. Javadpour, and S. Farahat, "Experimental Study of Fluid Flow Characteristics Around Conical Cavitators with Natural and Ventilated Cavitations," Journal of Marine Science and Technology, Vol. 25(5):pp. 489–498, 2017.
[
18]. M. Moghimi, N. M. Nouri, and E. Molavi, "Experimental Investigation on Supercavitating Flow Over Parabolic Cavitators," Journal of Applied Fluid Mechanics, Vol. 10(1):pp. 95–102, 2017.
[
19]. S. M. Javadpour, S. Farahat, H. Ajam, M. Salari, and A. H. Nezhad, "Experimental and Numerical Study of Ventilated Supercavitation Around a Cone Cavitator," Heat Mass Transfer, Vol. 53(5):pp. 1491–1502, 2016.
[
20]. J. B. J. Baron Fourier, "The Analytical Theory of Heat," The University Press, 1878.
[
21]. S. T. Johansen, J. Wu, and W. Shyy, "Filter-based Unsteady RANS Computational," International Journal of Heat and Fluid Flow, Vol. 25, pp. 10–21, 2004.
[
22]. C. T. Ha, W. G. Park, and C. L. Merkle, Multiphase Flow Analysis of Cylinder Using a New Cavitation Model, CAV 2009. pp. 6622009.
[
23]. W. Wagner, and H. J. Kretzschmar, IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam, International Steam Tables: Properties of Water and Steam based on the Industrial Formulation IAPWS-IF97. pp. 7–150, 2008.
[
24]. X. Zhang, Y. Yu, and L. Zhou, "Numerical Study on the Multiphase Flow Characteristics of Gas Curtain Launch for Underwater Gun," International Journal of Heat and Mass Transfer, Vol. 134, pp. 250–261, 2019.
[
25]. H. S. Hwang, V. T. Nguyen, D. H. Kim, D. G. Choi, S. H. Park, and W. G. Park, Analysis of Supercavity Underwater Vehicle Characterized by High Temperature Exhaust Gas at the Rear, KIMST Annual Conference Proceedings. pp. 748–749, 2021.