J. KIMS Technol Search

CLOSE


Journal of the Korea Institute of Military Science and Technology 2010;13(6):1034-1042.
Effect of Vertical Mixing Scheme on Upper Ocean Simulation of the East Sea
Chan-Joo Jang, Se-Han Lim
1
2
연직혼합모수화가 동해 상층 모사에 미치는 영향
장찬주, 임세한
1한국해양연구원
2해군사관학교
Abstract
This study investigates effects of three different parameterizations of vertical mixing scheme on upper ocean simulation of the East Sea, focusing on the seasonal variations of the sea surface temperature(SST) and the mixed layer depth(MLD) using an ocean general circulation model(GFDL MOM1.1). The considered vertical mixing schemes are the Laplacian scheme(L scheme) that use a constant eddy coefficient, the Mellor-Yamada scheme(MY scheme), and a new scheme(Noh scheme). The Noh scheme, a second-order turbulence closure, was developed considering recent observational evidences such as the enhancement of turbulent kinetic energy near the sea surface. During summer L scheme underestimates the SST, while MY scheme overestimates the SST, compared to climatological SST. Noh scheme produces the SST in better agreement with climatological one. During winter all schemes overestimate the SST up to $4^{circ}C$ compared to climatological SST. Vertical profiles of the basin-mean temperature show that L scheme produces higher temperature below the thermocline than those of other schemes. The winter MLD simulated from L scheme is rather large compared to that from other schemes, but the differences in MLD during summer are not significant.
Key Words: Vertical Mixing Scheme, East Sea, MLD, SST
TOOLS
Share :
Facebook Twitter Linked In Google+ Line it
METRICS Graph View
  • 441 View
  • 0 Download
Related articles in J. KIMS Technol.


ABOUT
ARTICLE CATEGORY

Browse all articles >

BROWSE ARTICLES
FOR CONTRIBUTORS
Editorial Office
160 Bugyuseong-daero 488beon-gil, Yuseong-gu, Daejeon 34060, Korea
Tel: +82-42-823-4603    Fax: +82-42-823-4605    E-mail: kimst@kimst.or.kr                

Copyright © 2024 by The Korea Institute of Military Science and Technology.

Developed in M2PI

Close layer
prev next