J. KIMS Technol Search


Journal of the Korea Institute of Military Science and Technology 2009;12(3):333-343.
Detection and Management of Misbehaving Node in Tactical Ad-Hoc Networks
Beom-Geun Jang, Soo-Jin Lee
전술 Ad-hoc 네트워크에서의 비정상행위 노드 탐지 및 관리
장범근, 이수진
Tactical Information Communication Network(TICN) is a concept-type integrated Military Communication system that enables precise command control and decision making by unifying the diversified military communication network and conveying diverse range of battle field information on real-time, at right place at right time. TICN is designed to advance into high speed, large capacity, long distance wireless relay transmission. To support mobility in battlefield environments, the application of Ad-hoc networking technology to its wireless communication has been examined. Ad-hoc network is consist of mobile nodes and nodes in the network depends on the cooperation of other nodes for forwarding of packets. In this context, some non-cooperating nodes may delay forwarding of packets or drop the packets. This may hamper the network as a whole and disrupt communication between the cooperating nodes. To solve this problem, we present a solution with a Node Weight Management Server(NWMS), which manages each node's weight according to its behavior in local area. When the NWMS detects misbehaving node, it increases the node's weight. If the node's weight exceeds a predefined threshold then the NWMS broadcasts the node's information into network to isolate the misbehaving node from the network. These mechanisms show that they are highly effective and can reliably detect a multitude of misbehaving node.
Key Words: Node Weight Management Server(NWMS), Ad-Hoc Network, Threshold, Misbehaving Node, Weight


Browse all articles >

Editorial Office
160 Bugyuseong-daero 488beon-gil, Yuseong-gu, Daejeon 34060, Korea
Tel: +82-42-823-4603    Fax: +82-42-823-4605    E-mail: kimst@kimst.or.kr                

Copyright © 2024 by The Korea Institute of Military Science and Technology.

Developed in M2PI

Close layer
prev next