J. KIMS Technol Search

CLOSE


Journal of the Korea Institute of Military Science and Technology 1999;2(1):73-81.
A Study on the Synthesis of bis-IBA Derivatives and their Catalytic Effects on the Hydrolysis Reaction of Nerve Agents
,
1
2
Bis-IBA 유도체의 합성 및 신경작용제 가수분해 촉매 효과 연구
양일우, 강덕구
1육군사관학교 화학과
2군사과학대학원 재료과학과
Abstract
Four bis-iodosobenzoic acid derivatives have been synthesizd in 5 steps following literature methods from 5-hydroxyantranilic acid; 1) diazotization and iodination, 2) acid protection, 3) tosylate substitution, 4) acid deprotection, 5) oxidation of iodo-substituent to iodoso group. Catalytic effects of new 5,5'-tri-, tetra-, deca-, polyethyleneglycoxy- bis(2-iodosobenzoic acid) on hydrolysis reactions of PNPDPP(p-nitrophenyl diphenyl phosphate), sarin and soman have been measured to determine the role of ethyleneglycoxy substituents as phase transfer catalysts. At $25{pm}0.2^{circ}C$, pH 8.0, and cetyltrimethyl ammonium chloride(CTACl) micelle solution condition, bis-IBA derivatives hydrolyzes PNPDPP with maximum pseudo-first order rate constant($K_{obsd}^{max}$) of 0.32035 ~ 0.13659 $sec^{-1}$, which corresponds to 2~18 times rate increase than those of unsubstituted o-IBA[iodosobenzoate($K_{obsd}^{max}=0.0645sec^{-1}$), iodoxybenzoate ($K_{obsd}^{max}$ = $0.0178 sec^{-1}$)]. At the similar condition for PNPDPP hydrolysis, bis-IBA derivatives also act as efficient catalysts for hydrolytic cleavage of nerve agents such as sarin and soman. Hydrolysis rate constant with 5,5'-polyethyleneglycoxy- bis(2-iodosobenzoic acid) shows 7 times increase than that of simple 5-hydroxy-2-iodosobenzoic acid.
TOOLS
Share :
Facebook Twitter Linked In Google+ Line it
METRICS Graph View
  • 383 View
  • 1 Download
Related articles in J. KIMS Technol.


ABOUT
ARTICLE CATEGORY

Browse all articles >

BROWSE ARTICLES
FOR CONTRIBUTORS
Editorial Office
160 Bugyuseong-daero 488beon-gil, Yuseong-gu, Daejeon 34060, Korea
Tel: +82-42-823-4603    Fax: +82-42-823-4605    E-mail: kimst@kimst.or.kr                

Copyright © 2024 by The Korea Institute of Military Science and Technology.

Developed in M2PI

Close layer
prev next